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Introduction

e Conservatism in Radionuclide Transport

— Drift Shadow
— Radionuclide Transport Calculation Methods

o Effects of Thermal Operating Modes

— Expansion of Repository Footprint

— Thermally-Driven Coupled Processes

e Multiple Lines of Evidence
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Conservatism in Radionuclide Transport:
Drift Shadow

Drift shadow concept

Y M P Yucca Mountain Project/Preliminary Predecisional Draft Materials

Subsystem model for drift shadow:
transport in the tsw35
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Conservatism in Radionuclide Transport:
Drift Shadow

(Continued)
Transport in the drift shadow results in much longer radionuclide
transport times than in the baseline transport models

Breakthrough curves at 45 m below potential waste emplacement drift

PA Transport Model (Rev 00)
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Conservatism in Radionuclide Transport:

Radionuclide Trananort Calculation Methods
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Conservatism in Radionuclide Transport:
PA Model for UZ Transport

Performance Assessment model is found to give earlier
breakthrough than process models

Comparison of cumulative normalized breakthrough curves at the water table using
FEHM V2.1 and DCPT V1.0 for the mean infiltration, glacial transition climate
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TSPA: more realistic transport method not yet implemented
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Thermal Operating Modes:
Fvnancinn nf Repository Footprint
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for the baseline potential repository footprint, but
overall effect is small. TSPA: expanded footprint
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Thermal Operating Modes:
Thermal-Hydrologic Effects

Thermal-Hydrologic (TH) Effects — Mountain Scale

— Mountain-scale flow beneath potential repository dominated by climate
change after 600 years for high and low temperature operating modes.
TH processes expected to have limited influence on mountain-scale
radionuclide transport

— Expected effects are negligible, not included in TSPA
TH Effects — Drift Scale

— High-temperature operating mode: Local dryout of fractures and matrix
(2500 to 3000 years) will prevent transport until rock re-wetting occurs

— Low-temperature operating mode: Local dryout of fractures will prevent
releases to the fractures for approximately 2000 years. Matrix water is
retained

— Not included in TSPA but may result in improved performance
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Thermal Operating Modes:
THC and THM Effects

Thermal-Hydrologic-Chemical (THC) Effects

— Estimated changes in fracture permeability due to THC processes
are less than one order of magnitude. This is much smaller than
natural variability of fracture permeability. Therefore, THC
processes are expected to have limited influence on transport

— Expected effects are negligible, not included in TSPA
Thermal-Hydrologic-Mechanical (THM) Effects

— Estimate changes in fracture permeability about 10 to 40%. This
IS much smaller than natural variability of fracture permeability.
Therefore, THM processes are expected to have limited influence
on transport

— Expected effects are negligible, not included in TSPA
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Multiple Lines of Evidence

Fracture-matrix interaction

— Hydrologic observations that matrix remains unsaturated despite
large percolation flux

— Observations of geochemical disequilibrium between perched
water and matrix pore water

— Steep gradients for uranium between fractures and matrix at
Nopal | unsaturated zone site, Pena Blanca

Long transport times

— Low mobility of uranium in the unsaturated zone at Pena Blanca
over 100,000 year time frame

— Limited migration (45 cm) of copper and lead in the unsaturated
zone at Akrotiri, Santorini over 3600 years
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Summary

Transport times in the drift shadow are orders of magnitude longer
than predicted by the existing PA model. The transport times in the
drift shadow model are significant relative to the 10,000 year
regulatory time frame

Process model representation of matrix diffusion is conservative due
to matrix discretization effects, resulting in shorter predicted
breakthrough times. The PA model is conservative relative to the
process models over most of the breakthrough curve

Including the southern extension to the potential repository block
results in slightly longer transport times to the water table

Local dryout from TH processes will delay or reduce radionuclide
transport immediately beneath potential waste emplacement drifts for
2000 to 3000 years. Other thermally-driven coupled process effects
are expected to have minimal effects on transport
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Backup
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Drift Shadow: Unsaturated Flow

Flow around a drift in the TSw35
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Drift Shadow: Unsaturated Flow
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Flow around a drift in the TSw35
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Drift Shadow: Technetium Transport

7777777 PA Transport Model (Rev 00)
Low matrix percolation rate (0.3 mm/yr)
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Drift Shadow: Neptunium Transport
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Matrix Block Discretization
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Matrix Block Discretization: Flow
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Radionuclide Transport Calculation
Methods: Results
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Thermal Operating Modes:
TH Coupled Processes — Mountain Scale
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Thermal Operating Modes:
TH Coupled Processes — Drift Scale
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