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Waste Package Concept
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Abstracted Model for Waste Package Degradation
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Examples of Model Validation
• Validation is an essential part of model development

⎯ Corroboration with independent measurements
⎯ Bounding analyses

• Examples will be given relevant to the overall process model
⎯ General & Localized Corrosion

− Weight loss measurements indicated very low corrosion rates
− Cyclic polarization indicates very high thresholds potentials
− Atomic Force Microscopy used for confirmation (validation)

⎯ Minimum Possible Crevice pH
− Transport model used to predict low pH in crevice
− Measurements and published data used to confirm predictions
− Investigation of hydrogen absorption in titanium crevices

⎯ Stress Corrosion Cracking Models
⎯ Elimination of need through mitigation of weld stress

⎯ Aging & Phase Stability Model
⎯ Experimental validation with TEM & related techniques
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Establishment of New WP Surface Environment by
Evaporative Concentration
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Since oxygen solubility (and corrosion rate) decreases with increasing salt concentration, the 
electrolyte formed by removing 90% of the water may be more severe than a fully saturated solution
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Dissolved Oxygen Measurements in LTCTF
Validated by Comparison to Published Data 

for Synthetic Geothermal Brine
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General Corrosion of Ti Gr 16:
Crevice Samples from LTCTF
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General Corrosion of Alloy 22:

Weight Loss Samples from LTCTF
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Vapor-Phase Exposure

Control Sample

Low General Corrosion Rates Confirmed with AFM:  
Alloy 22 in LTCTF SAW at 90°C for 1 Year
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316L in SSW at 100 C (PEA016)
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Alloy 22 in SSW at 120 C (DEA033)
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Ti Gr 7 in SSW at 120 C (NEA031s)
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Alloy 22 in SAW at 90 C (DEA002)
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Alloy 22 in SCW at 90 C (DEA016)
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Anodic Oxidation Peak

Baseline:  Pt in SCW at 90 C (PT001)
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Anodic oxidation peaks observed in CP scans for 
Alloy 22 in SCW electrolytes

CP scans with Pt blank show that anodic peak due 
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Gamma Radiolysis Effects:
Insignificant Impact on Corrosion Potential &

Breakdown of Passive Film 
• Gamma radiolysis could promote localized corrosion

⎯ Production of hydrogen peroxide
⎯ Anodic shift of the corrosion potential, closer to the threshold for 

breakdown of passive film

• A strategy has been formulated for addressing any enhanced radiolysis 
effects in the EDA II design

⎯ Re-examination stainless steel corrosion data from gamma pit that 
was produced by Yucca Mountain Project in the mid 1980’s

⎯ Discussions with investigators at General Electric Corporation
⎯ Measurement of corrosion & threshold potentials of Alloy 22 and 

other WP materials as functions of H2O2 concentration

• Based upon such measurments, gamma radiolysis is being screened 
out as a signficant detrimental process
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Simulated Gamma Radiolysis Experiments with
Alloy 22 in SCW and SAW

Effect of H2O2 on Corrosion Potential of 
Alloy 22 in SCW at 25 Centigrade
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Hydrogen peroxide does not drive corrosion potential into anodic oxidation or regions 
of passive film destabilization in SAW or SCW
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Minimum Possible Crevice pH
• Crevices will be formed

⎯ Beneath mineral precipitates, corrosion products, dust, rocks, 
cement and biofilms

⎯ Between waste package and supports
⎯ Between outer barrier (Alloy 22) and inner barrier (316 NG)

• The crevice environment will be more severe than the NFE
⎯ Suppression of pH due to the accumulation of H+ from the 

hydrolysis of dissolved metal
⎯ Field-driven electromigration of Cl- (and other anions) into crevice 

must occur to balance cationic charge associated with H+

• The crevice environment sets the stage for other modes of attack
⎯ General corrosion
⎯ Pitting (initiation & propagation)
⎯ Stress corrosion cracking (initiation & propagation)

• Successful defense of the Waste Package (WP) design requires 
adequate understanding of such phenomena
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Stainless Steel 316L:  4M NaCl, 200 mV & 23 Centigrade

0

1

2

3

4

5

6

7

8

9

10

0 120 240 360 480 600 720 840 960 1,080 1,200

Time (minutes)

C
re

vi
ce

 p
H

-400

-200

0

200

400

600

800

1,000

1,200

Po
te

nt
ia

l a
t M

ou
th

(m
V 

vs
. A

g/
Ag

C
l)

Inside of Crevice (pH)

Mouth of Crevice (pH)

Potential at Mouth (mV vs. Ag/AgCl)

Alloy C-22 in 4M NaCl at 23 Centigrade

-2

-1

0

1

2

3

4

5

6

7

8

9

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

Time (minutes)

C
re

vi
ce

 p
H

-400

-200

0

200

400

600

800

1,000

1,200

Po
te

nt
ia

l a
t M

ou
th

(m
V 

vs
. A

g/
Ag

C
l)

Inside of Crevice (pH)

Mouth of Crevice (pH)

Potential at Mouth (mV vs. Ag/AgCl)

Sensors return to 
original values at 
end of experiment
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Determination of Crevice pH for WP Materials

Alloy 22 in 4M NaCl
316L in SCW

316L in Satd. KCl
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Hydrogen Absorption in Titanium Crevice Confirmed 
with Secondary Ion Mass Spectrometry

Hydrogen absorption by titanium is exacerbated by crevice.  Additional work is needed 
to fully understand this phenomena.  However, at the present time, it is not believed 

that the threshold hydrogen concentration for HIC will be exceeded.
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Validation of Stress Corrosion Cracking Models 
• Slow strain rate testing

⎯ Experimental determination of stress-strain curves
⎯ Used for screening environment for other SCC tests

• Initiation based upon threshold stress intensity factor
⎯ Method employed by Yucca Mountain Project
⎯ Double Cantilever Beam Method (Ajit Roy)
⎯ Data have been obtained for Alloy 22 in NaCl solutions

• Finite propagation rate based upon film-rupture model
⎯ Method employed by General Electric Corporation
⎯ Reverse DC Method (Peter Andresen)
⎯ No data have been generated for Alloy 22

• Microbes may pose unique threats
⎯ Sulfate reducing bacteria (sulfide)
⎯ Iron oxidizing bacteria (ferric ion)
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The Need for SCC Models Eliminated with
Validated Technique for Stress Mitigation 
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Centerline
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Theoretical Models for Aging & Phase Stability

• Theoretical tools and expertise are now in place to establish time-
temperature-transformation (TTT) diagrams for multicomponent alloys

⎯ THERMO-CALC
⎯ DICTRA

• Phenomenological THERMO-CALC and DICTRA codes predict
⎯ Energetics
⎯ Regions of stability & metastability
⎯ Phase transformation rates limited by

⎯ Kinetics
⎯ Diffusive transport

• Electronic structure-based approach combined with Monte Carlo 
simulations used to

⎯ Supplement the thermodynamic databank
⎯ Predict solute effects on ordering processes, complex phase 

formation and evolution
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Precipitated Intermetallic Phase Observed in
Welded Alloy 22 Aged for 40,000 hr at 427°C

Theoretical models are being validated 
through detailed scientific research with 

transmission electron microscopy, 
electron beam diffraction, and other 

relevant techniques

SEM

TEM
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Alloy C-22 Aged at 649 °C for Various Times
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TTT Diagram for Alloy 22
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Preliminary Precipitation Kinetics for Alloy 22

1

10

100

1000

10000

100000

9.0E-04 9.5E-04 1.0E-03 1.1E-03 1.1E-03 1.2E-03 1.2E-03

1/T (K-1)

Ti
m

e 
(h

rs
)

Grain Boundary Start

Grain Boundary Finish

Bulk Start

Based on ASTM G28-B

593 Centigrade

800 Centigrade

Extrapolates to well beyond 
10,000 years at 300 degrees 

Centigrade



2/27/200
4

Farmer-091499.ppt 25

Summary
• Validation is an essential part of model development

⎯ There are multiple ways to accomplish this
⎯ All have to be based upon good scientific investigation

• Examples will be given relevant to the overall process model
⎯ General & Localized Corrosion

− Weight loss measurements indicated very low corrosion rates
− Cyclic polarization indicates very high thresholds potentials
− Atomic Force Microscopy used for confirmation (validation)

⎯ Minimum Possible Crevice pH
− Transport model used to predict low pH in crevice
− Measurements and published data used to confirm predictions
− Investigation of hydrogen absorption in titanium crevices

⎯ Need for Stress Corrosion Cracking (SCC) model eliminated
⎯ Validation of new technique for mitigation of weld stress

⎯ Validation of Phase Stability Model
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Summary
• Preliminary conclusions

⎯ No significant localized corrosion expected
⎯ Life not limited by general corrosion
⎯ Phase stability appears to be acceptable
⎯ Focus on the mitigation of SCC at final closure weld

• New design has increased the need for additional testing
⎯ Stainless steel & titanium were not used in TSPA-VA design
⎯ Tests on these materials have just started
⎯ Limited availability of qualified data

• Additional R&D must be directed towards fabrication processes
⎯ Thermally enhanced fit of Alloy 22 outer barrier over 316NG

⎯ Need to minimize tensile stress in Alloy 22 during cooling
⎯ SCC threat at unannealed closure welds in Alloy 22

⎯ Mitigation of through application of laser peening
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Valid WP Model Based Upon Contributions of Many

• Definition of Interfacial Waste Package Environment
⎯ Greg Gdowski & Francis Wang

• Long Term Corrosion Testing 
⎯ Dan McCright, John Estill, Ken King, Steve Gordon & Larry Logotetta

• Electrochemical Studies & Surface Physics
⎯ John Estill, Ken King, Steve Gordon & Larry Logotetta
⎯ Peter Bedrossian & David Fix

• Phase Stability
⎯ Tammy Summers, Patrice Turchi & Larry Kaufman

• Stress Corrosion Cracking Studies
⎯ Ajit Roy, John Estill, Maura Spragge, Dennis Fleming & Beverly Lum

• Microbial Influenced Corrosion
⎯ JoAnn Horn, Denny Jones & Tiangan Lian 

• Welding Processes, Residual Stress Analysis & Laser Peening
⎯ Don Stevens, Lloyd Hackel, Fritz Harris (MIC) & Al Lingenfelter

• Waste Package Modeling
⎯ Patrice Turchi, Stephen Lu, & Jia-Song Huang


	Development & Validation of Realistic Degradation Mode Models for theWaste Package and Drip Shield
	Low General Corrosion Rates Confirmed with AFM:  Alloy 22 in LTCTF SAW at 90C for 1 Year
	The Need for SCC Models Eliminated withValidated Technique for Stress Mitigation

