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Introduction


•	 Long-term containment (10,000 years) requires materials 
with exceptional corrosion resistance 
–	 Very small penetration rates must be measured 
–	 Measurement error must be minimized to the extent possible 

•	 Site Recommendation (SR) & License Application (LA) 
require credible predictive models based on sound 
understanding 

•	 Such models have been developed for relevant 
degradation modes 
–	 General & Localized Corrosion 
–	 Stress Corrosion Cracking 
–	 Juvenile Failure 
–	 Phase Stability 
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Introduction

(continued) 

• Preliminary conclusions 
– No significant localized corrosion expected 
– Life not limited by general corrosion 
– Phase stability appears to be acceptable 
– Focus on SCC at final closure weld 
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Abstracted Model for Waste Package Degradation
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Determination of Crevice pH for
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Type 1: Alloy 22 in SSW at 120° C (DEA033)
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Atomic Force Microscopy of Alloy 22 surface


Vapor-Phase Exposure 
(above water line) 

General corrosion 

Long Term Corrosion Test Facility at LLNL 

No Exposure (control sample) 

Scratch from surface finishing 

The thickness of the oxide grown in one year 
is consistent with the nominal corrosion rate 

of 0.05 to 1 micron per year. 

exposed to vapor phase SAW for 1 year at 90�C 



SCC Model

Three Primary Contributions to Stress 

Weight stress 

Weld stress 

Contact stress 
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SCC Model - Critical Stress & Flaw Size


• Criteria for stress corrosion cracking 
K ‡ K ISCC 

• Stress intensity factor for ideal crack 
K = bs (p a )1 / 2 

• Stress intensity factor for crack at base


of elliptical flaw (or pit)


1/2K=abs [p(aflaw+da)]

K = b K t s (d a )1 / 2


2a
Kt = 1 + 
c 

ma md 40» 

c2

t 

flawa 
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Measurement of Residual Weld Stress in a

Prototypical Closure Weld of Waste Package 
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Double-Pass Laser Peening (4340 Steel)
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Mechanisms for WP Juvenile Failure


• Types of generic flaws applicable to waste packages 
– Weld or base metal flaws 
– Out-of-spec material in weld or base metal 
– Improper heat treatment 
– Surface contamination 
– Handling damage 
– Administrative error leading to unanticipated environment 

• Generic flaws not considered applicable to waste packages 
include 

– Improper weld flux 
– Poor weld joint design 
– Missing welds 
– Mislocated welds 

M&O Graphics Presentations/NWTRB/YMFarmer-062999.ppt 12 



Review of Early Failures

in Various Containers


• Types of containers include: 
– Boilers and Pressure Vessels 
– Nuclear Fuel Rods 
– Radioactive Cesium Capsules 
– Dry Storage Casks for SNF 
– Food Storage Cans 

• Manufacturing defect related failure rates in the range of 
10-4 to 10-6 per container 

• Review identified eleven generic types of flaws that can 
affect welded metallic containers 
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Alloy 22 Weld Flaw Distributions


• Preliminary flaw distributions developed based on data 
from recent NRC sponsored modeling of nuclear piping 
welds 

– 20 mm and 25 mm thick, Stainless Steel, TIG welds 
– Includes reliability of UT, PT, and RT inspections as appropriate 
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Precipitated µ Phase Observed in

Welded Alloy 22 Aged for 40,000 hr at 427°C


SEM 

TEM 

Work is now underway at LLNL 
to better understand formation of 
intermetallic phases that may 
form in Alloy 22 welds. 
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Diagram for Alloy C-22

Time Temperature Transformation (TTT)
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Inputs to Waste Package Degradation

 Process Model Report 

• Environment on Drip Shield & Waste Package Surface (July 99) 
• Juvenile Failures (July 99) 
• Phase Stability & Aging (July 99) 
• Mechanical Failure Due to Rockfall (August 99) 
• General Corrosion of Waste Package (July 99) 
• Localized Corrosion of Waste Package (July 99) 
• General Corrosion of Drip Shield (August 99) 
• Localized Corrosion of Drip Shield (August 99) 
• Stress Corrosion Cracking of Waste Package (September 99) 
• Stress Corrosion Cracking of Drip Shield (September 99) 
• Hydrogen Induced Cracking of Drip Shield (September 99) 
• Degradation of Stainless Steel Structural Material (September 99) 
• Abstractions for WAPDEG (August 99 to October 99) 

M&O Graphics Presentations/NWTRB/YMFarmer-062999.ppt 17 



Important Issues


• Updated design 
– Stainless steel & titanium were not used in TSPA-VA design 
– Tests on these materials have just started 
– Limited availability of qualified data 
– Increased gamma radiolysis 

• Fabrication processes 
– Shrink fitting with outer barrier of Alloy 22 

» Precipitation of undesirable phases during heating 
» Development of excessive tensile stress during cooling 

– Unannealed closure welds 
» Initiation of SCC at weld defects 
» Possible mitigation of residual weld stress with laser peening 
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Important Issues

(continued) 

• Competing models for Stress Corrosion Cracking (SCC)

– Initiation based upon threshold stress intensity factor


» Method employed by Yucca Mountain Project

» Double Cantilever Beam Method (Ajit Roy)

» Data have been obtained for Alloy 22 in NaCl solutions


– Finite propagation rate based upon film-rupture model

» Method employed by General Electric Corporation


» Reverse DC Method (Peter Andresen)

» No data have been generated for Alloy 22


M&O Graphics Presentations/NWTRB/YMFarmer-062999.ppt 19 



Important Issues

(continued) 

• Microbial Influenced Corrosion (MIC) 
–	 Microbes may pose unique threats 

» Sulfate reducing bacteria could produce sulfide, a species known to promote 
SCC of Alloy 22 

» Iron oxidizing bacteria could convert Fe(II) to Fe(III), thereby pushing the 
corrosion potential closer to threshold for localized attack 

– Quantitative models have not yet been developed 
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Important Issues

(continued) 

• Effects of increased radiation field on corrosion processes

– Gamma radiolysis can produce hydrogen peroxide 
– Hydrogen peroxide can shift the corrosion potential in anodic direction 

closer to thresholds for localized attack 

• A strategy has been formulated for addressing any

enhanced radiolysis effects in the EDA II design


– Re-examination stainless steel corrosion data from gamma pit that was 
produced by Yucca Mountain Project in the mid 1980’s 

– Discussion & collaboration with investigators at General Electric

Corporation


– In the absence of gamma radiation, investigate the effect of hydrogen 
peroxide concentration on the corrosion potential (and other 
electrochemical responses) of WP materials 

– Repeat gamma pit studies with Alloy 22 and Ti Gr 7, thereby augmenting 
early Project data for stainless steels 
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Summary


• Long-term containment (10,000 years) requires materials 
with exceptional corrosion resistance 

– Very small penetration rates must be measured 
– Measurement error must be minimized to the extent possible 

• Site Recommendation (SR) & License Application (LA) 
require credible predictive models based on sound 
understanding 

• Such models have been developed for relevant degradation 
modes 

– General & Localized Corrosion 
– Stress Corrosion Cracking 
– Juvenile Failure 
– Phase Stability 
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Summary

(continued) 

• Preliminary conclusions 
– No significant localized corrosion expected 
– Life not limited by general corrosion 
– Phase stability appears to be acceptable 
– Focus on SCC at final closure weld 
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Scientific & Technical Contributions


• Definition of Interfacial Waste Package Environment 
�Greg Gdowski & Francis Wang 

• Long Term Corrosion Testing 
�Dan McCright, John Estill, Ken King, Steve Gordon & Larry Logotetta 

• Electrochemical Studies & Surface Physics 
�Joe Farmer, John Estill, Ken King, Steve Gordon & Larry Logotetta 
�Peter Bedrossian & David Fix 

• Phase Stability 
�Tammy Summers, Patrice Turchi & Larry Kaufman 

• Stress Corrosion Cracking Studies 
�Ajit Roy, John Estill, Maura Spragge, Dennis Fleming & Beverly Lum 

• Microbial Influenced Corrosion 
�JoAnn Horn, Denny Jones, Tiangan Lian, 

• Welding Processes, Residual Stress Analysis & Laser Peening 
�Don Stevens, Lloyd Hackel, Fritz Harris (MIC) & Al Lingenfelter 

• Waste Package Modeling 
�Joe Farmer, Stephen Lu, Bob Riddle & Jia-Song Huang 



Additional Supporting Data


• Cyclic Polarization 
– Pt baseline 
– Type 1: Alloy 22 in SAW 
– Type 2: Alloy 22 in SCW 
– Type 3: 316L in SSW 
– Type 4: Ti Gr 7 in SSW 

• Crevice pH & Current 
– Stainless Steel 316L: 4M NaCl, 200 mV, 23 Centigrade - pH 
– Alloy 22 in 4M NaCl at 23 Centigrade - pH 
– Alloy 22 in 4M NaCl at 23 Centigrade - Current 
– Alloy 22 in SCW at 23 Centigrade - pH 
– Determination of Crevice pH for WP Materials 
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Additional Supporting Data


• Long Term Corrosion Testing Facility Data 
– Dissolved Oxygen in LTCTF 
– General Corrosion of Alloy 22: Weight Loss Samples 
– General Corrosion of Ti Gr 16:  Crevice Corrosion Samples 
– Analysis of Error in Corrosion Rate Measurements 
– AFM of Alloy 22 Samples from LTCTF 
– AFM of Patterned Samples 

• Weld & Stress Corrosion Cracking 
– Residual Stress in Prototypical Welds of Alloy 22 
– SSRT of Alloy 22 
– SSRT of Ti Gr 12 (Ti Gr 7 analog) 
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Additional Supporting Data

(continued) 

• Phase Stability 
– Complete Coverage of Alloy 22 GBs at High Temperature 
– 88,000 Years Required 

• Juvenile Failure Model 
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Baseline: Pt in SCW at 90° C (PT001)
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Type 1: Alloy 22 in SAW at 90° C 
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Type 2: Alloy in SCW at 90° C (DEA016)
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Type 3: 316L in SSW at 100° C
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Type 4: Ti Gr 7 in SSW at 120° C
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Stainless Steel 316L:

4 M NaCl, 200mV and 23° C
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Alloy C-22 in 4 M NaCl at 23° C
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Alloy C-22 in SCW at 23° C
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Determination of Crevice pH for

Waste Package Materials 
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Comparison of Dissolved Oxygen

Measurements in LTCTF to Data for


Synthetic Geothermal Brine 
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General Corrosion of Alloy 22

Weight Loss Samples from LTCTF
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General Corrosion of Ti Gr 16

Crevice Samples from LTCTF 
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+ � � � + 

Analysis of Error in

Measurement of General Corrosion:


Total Derivative 
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dy =
¶ y 

dx1 +
¶ y 

dx2 +
¶ y 

dx3 +
¶ y 

dx4 + � �� + 
¶ y 

dxn¶x1 ¶ x2 ¶ x3 ¶ x4 ¶ xn 

n 

dy = � ¶ y 
dx j 

j=1 ¶x j 

¶ y
D y = 

¶ y 
Dx1 + 

¶ y 
Dx2 + 

¶ y 
D x3 + 

¶ y 
Dx4 Dx 

¶ x1 ¶ x2 ¶x3 ¶ x4 ¶ xn 
n 

n ¶ y
D y = � ¶x j 

Dx j 
j=1 
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Analysis of Error in

Measurement of General Corrosion Rate:


Application to Weight Loss Formula


dp w 1 dp

dy 

= 
r · t [2(a · b) + 2 (b · c) + 2(a · c)] y = 

dt


dy =
¶ y 

dw +
¶ y

dr +
¶ y 

dt +
¶ y 

da +
¶ y 

db +
¶ y 

dc 
¶w ¶r ¶t ¶a ¶b ¶c 

¶ y ¶ y ¶ y ¶ y ¶ y ¶ y
D y = Dw + Dr + Dt + Da +
 Db + Dc 

¶w ¶ r ¶t ¶a ¶b ¶c 

¶ y 
= 

1 1 ¶ y 
= 

w [2b + 2c] 
¶w r · t [2(a · b) + 2(b · c) + 2(a · c)] ¶a r · t [2(a · b) + 2(b · c) + 2(a · c)]2 

¶ y 
= 

w 1 ¶ y 
= 

w [2a + 2c] 
2¶ r r · t [2(a · b)+ 2(b · c) + 2(a · c)] ¶b r · t [2(a · b) + 2(b · c) + 2(a · c)]2 

¶ y 
= 

w 1 ¶ y 
= 

w [2a + 2b] 
¶t r · t 2 [2(a · b) + 2(b · c )+ 2(a · c)] ¶c r · t [2(a · b) + 2(b · c) + 2(a · c)]2 
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Atomic Force Microscopy of Alloy 22 surface


The thickness of the oxide grown in one 
year is consistent with the nominal 

corrosion rate of 0.05 to 1 micron per year. 

Scratch from surface finishing 

Corrosion product or deposit 

exposed to liquid phase SAW for 1 year at 90�C 

Long Term Corrosion Test Facility at LLNL
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Reducing Uncertainty with 

• AFM offers sub-nanometer vertical resolution for oxide 

Atomic Force Microscopy of Patterned Coupons 

thicknesses, pit depths, general corrosion and swelling,

while a photoresist protects base metal.  This is a novel

approach. 

Optical Image 

Photoresist 

Exposed 

Ti Gr 12 

Patterned 
Test Coupon 

AFM Image 

5 Å oxide in exposed stripes 

(1) Expose to 1 M H2SO4, 
yes0.2V wrt SCE, 13 hrs. 

(2) Wash away photoresist 

75 µm 

5/8” 

25 µm
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Slow Strain Rate Testing of Alloy 22
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Slow Strain Rate Testing of Ti Gr 12
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Cathodic polarization in acidic media 
degrades mechanical properties 
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Alloy 22 Aged at at 760°C for 16,000 hrs


Mill Annealed Aged Material
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Covered with Carbides, P and/or µ Phase 
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Time at Which Grain Boundaries Become


593°CThe estimated time required for 
complete coverage of the grain boundaries 
is ~ 88,000 years at 400°C 

800°C 
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• Failure of a waste package, due to manufacturing or
handling induced defects, at a time earlier than would be
predicted by mechanistic degradation models for an
“ideal” package

• Failure rates for all components exhibit a “bathtub” curve
behavior over time

Definition of WP Juvenile Failure
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Flaws in Shell and Lid Welds


• Over 20 years of research into the density and size 
distribution of weld flaws and the mechanisms which 
produce them 

– Formation mechanisms include: Lack of fusion, porosity, slag inclusions, 
centerline cracking (generally hydrogen induced), heat-affected zone 
cracking 

– NRC has sponsored weld flaw density and size distribution research by 
Rolls Royce and PNL for a variety of materials, weld thickness, weld 
methods, and post-weld inspections 

– Research provides input to probabilistic fracture mechanics analyses and 
risk informed in-service inspection proposals 
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Flaws in Shell and Lid Welds

(continued) 

•	 RR-PRODIGAL code developed to model flaw occurrence 
in welds 
–	 Surface breaking weld flaws expected to be most important contributor to 

WP performance 
–	 Represent pre-existing pits or crevices, and potential SCC sites 
–	 Unlike pressure vessels, no growth of embedded flaws expected due to 

lack of cyclic stresses 
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Juvenile Failure Model


• Work currently in progress to develop initial 
probability and consequence estimates for 
remaining flaw types 

• Future work includes: 
– Modeling of WP welds using RR-PRODIGAL code 
– Refined estimates of flaw occurrence probability 
– Refined estimates of flaw effects on WP performance 
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