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Seepage Into Drifts 




Introduction 


"Seepage" is the liquid water that enters the emplacement 
drifts. 

Seepage enhances waste-package corrosion, mobilization of 
radionuclides from the waste form, and transport of 
radionuclides within the EBS. 

The final results (i.e., doses to individuals) are strongly affected 
by seepage. 

We parameterize seepage with two quantities: 

the seepaqe fraction, or fraction of waste packages 
contacted by seeps 

the seep flow rate, or flow rate of water onto those 
packages that are contacted by seeps 

Seepage is calculated for six repository regions. I 
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Conceptual Model 


Drifts in unsaturated media can act as capillary barriers, 
diverting water around them. 

m 	 Seepage occurs if rock at the drift wall becomes locally 
saturated 

because of disturbance to the flow field caused by the drift 
opening 

because of heterogeneities in the permeability field, giving 
rise to channelized flow and local ponding 

This capillary-barrier effect is confirmed by the ESF niche test. 

5 



Process Model 
• 	 3-D drift-scale flow model (LBNL) 

-	 steady state, isothermal 

-	 no matrix imbibition (fracture continuum only) 

-	 heterogeneous fracture cont inuum with 0.5-m grid blocks 

-	 mechanical ,  chemical,  and thermal alterations assumed to be 
offsetting or insignificant 
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Development of Probability Distribution 

Model results (percolation = 73 mm/yr) Weights applied to the cases 
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Seepage-Fraction Statistics 
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Seepage vs. Percolation Rate 
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Sensitivity to Fracture-Property Weights 
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Summary 


m 	 Seepage for TSPA-VA is based on a 3-D heterogeneous drift- 
scale flow model. 

Initial comparisons with the ESF niche test are favorable. 

Results from nine sets of fracture hydrologic properties are 
weighted to arrive at the final abstracted model. 

m 	 Modeled averaqe seepage fraction for present climate is about 
3%, for LTA climate is about 25%, and for SP climate is about 
40%, with wide uncertainty bands. 

m 	 For comparison, UZFMEE estimates ranged from less than 1% 
up to 10% (under present conditions). 

[] 	 Modeled averacle seep flow rates range from about 20 
liters/year (present climate; roughly a drip every couple of 
minutes) to about 700 liters/year (SP climate; roughly a drip 
every few seconds). 
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Thermal Hydrology 




Introduction 

Drift-scale thermal hydrologic calculations are used to 
determine the thermodynamic environment (hot, dry, humid, 
etc.) within emplacement drifts and at waste-package surfaces 
after the emplacement of heat-generating waste. 

Mountain-scale thermal hydrologic calculations are used to 
determine the impact of repository heat on large-scale 
movement of gas and liquid in the mountain. 

Drift-scale calculations must be linked to mountain-scale 
calculations in order to properly account for dissipation of heat 
away from the repository. 
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Quantities From Drift-Scale Model 


Drift-wall 	 Waste-package 
temperature & temperature 
relative humidity 

Invert liquid 
saturation 
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Quantities From Mountain-Scale Model 
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Modeling Approach 
Drift-scale T-H models 

- A drift segment with eight waste packages is modeled, to 
account for variability in wP heat output. 

-	 The dual-permeability flow model is used. 

- Radiative heat transfer is modeled for open drifts. 

-	 A series of linked models from mountain scale down to drift 
scale is used to approximate important dimensional and 
thermal hydrological effects. 

- An alternative method of l inkingmountain-scale and drift- 
scale models is used as a check. 

Mountain-scale T-H models 

- A two-dimensional east-west cross section is used. 

-	 The equivalent-continuum flow model is used, with reduced 
matr,x satiation to allow greater fracture flow. 

The models include layering and property sets based on the 
LBNL site-scale unsaturated-zone flow model 
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Average Waste-Package Temperature 
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WP Temperature Variability in Region NE 
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Effect of UZ-Flow Uncertainty 
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Air Mass Fraction in Repository 
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Summary 
Drift-scale T-H quantities are obtained from a multiscale 
method that accounts for both mountain-scale and drift-scale 
processes. 

The multiscale modeling approach has been tested against 3-D 
T-H drift-scale models for repository center and edge locations, 
with good agreement. 

Gas-phase quantities are obtained from a 2-D mountain-scale 
T-H model. 

TSPA-VA T-H analyses are performed using conceptual flow 
models that allow for fracture flow (dual permeability; 
equivalent continuum with reduced matrix satiation). 

UZ flow/transport and UZ thermal hydrology use consistent 
hydrologic-property sets. 

Drift seepage is currently calculated within the UZ-flow tasks 
(i.e., thermal effects on seepage are neglected). 

23 


