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Seepage Into Drifts



Introduction

B “Seepage” is the liquid water that enters the emplacement
drifts.

B Seepage enhances waste-package corrosion, mobilization of
radionuclides from the waste form, and transport of
radionuclides within the EBS.

B The final results (i.e., doses to individuals) are strongly affected
by seepage.

B We parameterize seepage with two quantities:

— the seepage fraction, or fraction of waste packages
contacted by seeps

—~ the seep flow rate, or flow rate of water onto those
packages that are contacted by seeps

B Seepage is calculated for six repository regions.




Conceptual Model

B Drifts in unsaturated media can act as capillary barriers,
diverting water around them.

B Seepage occurs if rock at the drift wall becomes locally
saturated

— because of disturbance to the flow field caused by the drift
opening

— because of heterogeneities in the permeability field, giving
rise to channelized flow and local ponding

B This capillary-barrier effect is confirmed by the ESF niche test.



Process Model

m 3-D drift-scale flow model (LBNL)
— steady state, isothermal
— no matrix imbibition (fracture continuum only)
— heterogeneous fracture continuum with 0.5-m grid blocks

— mechanical, chemical, and thermal alterations assumed to be
offsetting or insignificant
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Development of Probability Distribution
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Seepage-Fraction Statistics

Seepage fraction
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Seepage fraction

Seepage vs. Percolation Rate
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Sensitivity to Fracture-Property Weights

A
o
o
=

Base Case
Increased fracture apertures
—— Decreased fracture apertures

| | Lol L L L Lilll Ll Ll 11 ALl

| | | I L Ly 1
10° 104 10° 102 10' 10° 10' 102 10%® 10°
Peak individual dose rate (mrem/yr)

Complementary cumulative probability
o )
N —h

11




Summary

B Seepage for TSPA-VA is based on a 3-D heterogeneous drift-
scale flow model.

B [|nitial comparisons with the ESF niche test are favorable.

B Results from nine sets of fracture hydrologic properties are
weighted to arrive at the final abstracted model.

B Modeled average seepage fraction for present climate is about
3%, for LTA climate is about 25%, and for SP climate is about
40%, with wide uncertainty bands.

B For comparison, UZFMEE estimates ranged from less than 1%
up to 10% (under present conditions).

B Modeled average seep flow rates range from about 20
liters/year (present climate; roughly a drip every couple of
minutes) to about 700 liters/year (SP climate; roughly a drip
every few seconds).




Thermal Hydrology



Introduction

B Drift-scale thermal hydrologic calculations are used to
determine the thermodynamic environment (hot, dry, humid,
etc.) within emplacement drifts and at waste-package surfaces
after the emplacement of heat-generating waste.

B Mountain-scale thermal hydrologic calculations are used to
determine the impact of repository heat on large-scale
movement of gas and liquid in the mountain.

B Drift-scale calculations must be linked to mountain-scale
calculations in order to properly account for dissipation of heat
away from the repository.
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Quantities From Drift-Scale Model
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Quantities From Mountain-Scale Model
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Modeling Approach

B Drift-scale T-H models

A drift segment with eight waste packages is modeled, to
account for variability in WP heat output.

The dual-permeability flow model is used.
Radiative heat transfer is modeled for open drifts.

A series of linked models from mountain scale down to drift
scale is used to approximate important dimensional and
thermal hydrological effects.

An alternative method of linking mountain-scale and drift-
scale models is used as a check.

B Mountain-scale T-H models

A two-dimensional east-west cross section is used.

The equivalent-continuum flow model is used, with reduced
matrix satiation to allow greater fracture flow.

B The models include layering and property sets based on the
LBNL site-scale unsaturated-zone flow model
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Average Waste-Package Temperature
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WP Temperature Variability in Region NE
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Effect of UZ-Flow Uncertainty
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Air Mass Fraction in Repository
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Summary

B Drift-scale T-H quantities are obtained from a multiscale
method that accounts for both mountain-scale and drift-scale
processes.

B The multiscale modeling approach has been tested against 3-D
T-H drift-scale models for repository center and edge locations,
with good agreement.

B Gas-phase quantities are obtained from a 2-D mountain-scale
T-H model.

m TSPA-VA T-H analyses are performed using conceptual flow
models that allow for fracture flow (dual permeability;
equivalent continuum with reduced matrix satiation).

B UZ flow/transport and UZ thermal hydrology use consistent
hydrologic-property sets.

B Drift seepage is currently calculated within the UZ-flow tasks
(i.e., thermal effects on seepage are neglected).



