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• Waste package degradation modeling in TSPA-1995
• TSPA-VA base case waste package degradation 

model
• Key parameters for waste package degradation 

model derived from Expert Elicitation
• Concluding remarks
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Key Parameters for the TSPA-VA 
Base Case Waste Package 

Degradation Model
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• Thresholds for CAM corrosion initiation
– thresholds dependent on the surface condition (dust, 

oxides, salts), dripping, location on a WP (top, sides, 
bottom)

– temperature threshold
– RH threshold for humid-air corrosion
– RH threshold for aqueous corrosion
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RH Threshold for Aqueous Corrosion of CAM (%)
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Key Parameters for the TSPA-VA 
Base Case Waste Package 

Degradation Model 
(continued)

LEE.PPT.125.NWTRB.10-23-97      9

• CAM corrosion modes
– humid-air or neutral pH (4 to 10) aqueous condition

» use TSPA-95 model for neutral pH aqueous general corrosion
» use TSPA-95 model for humid-air general corrosion 
» general (uniform) corrosion with low localized variations

– alkaline (pH≥10) aqueous condition
» high aspect ratio pitting model
» use pit growth law, rate = CG(t) + CL tn

» use “modified” TSPA-95 model for CG(t) = fn (T, pH)
» pit density
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CAM/CRM - n value
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Distribution for Pit Density of CAM in 
Alkaline Conditions (pH≥10)

CAM Pit Density (pits/cm2)
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Key Parameters for the TSPA-VA 
Base Case Waste Package 

Degradation Model 
(continued)
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• CRM corrosion mode
– general corrosion of CRM under humid-air or “non-

dripping” aqueous condition 
– marginal galvanic protection of CRM (a few 100 years 

at most)
– localized (pitting/crevice) corrosion requires drips 

with elevated Cl- and low pH within a crevice and pit
– use pit growth law for pitting and crevice corrosion

» pit growth rate = CG(t) + CL tn

» pit density and pit diameter
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Distribution for Time Constant ‘n’ of 
Pit Growth Rate (= CG + CL tn) for CRM 

Pitting/Crevice Corrosion
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Concluding Remarks
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• The WPDEE results will be incorporated extensively 
in the TSPA-VA base case and sensitivity analyses
– develop scenarios for the base case and sensitivity 

analysis
– develop/derive key model parameters 

• The base case and sensitivity analyses of waste 
package degradation modeling in TSPA-VA will be 
focused to evaluate the effect of waste package 
performance
– waste containment and isolation

» time-history of waste package failure (first pit perforation)
» time-histories of waste package perforations

– alternative options for waste package design
– effects of alternative EBS designs



BACKUP



Aspects of Waste Package 
Performance That Impact Total 

System Performance 
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• Waste containment - time of waste package failure
– waste package failure defined as the first perforation 

(pit penetration or crack propagation) through the 
container wall

– corresponds to the initiation of waste form 
degradation inside the failed waste package



Aspects of Waste Package 
Performance That Impact Total 

System Performance
(Continued)
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• Controlled/gradual release of radionuclides - waste 
package failure rate, and subsequent perforation 
rate of failed waste container
– waste package failure rate provides the rate of waste 

inventories that become available for release
– subsequent perforation rate of failed waste container 

provides the area in the waste container available for 
radionuclide transport by diffusion and/or advection



Waste Package Degradation Modeling 
in TSPA-1991 (SNL)
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• Container failure based on a predetermined 
distribution
– no container failure during an initial dry-out period of 

300 years
– a maximum container failure time sampled from a log-

uniform distribution from 500 to 10,000 years



Waste Package Degradation Modeling 
in TSPA-1993
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• SNL
– carbon-steel outer barrier

» dry-oxidation active when no liquid water present 
• modeled with the oxidation rate equation following an Arrhenius

relationship
» aqueous general corrosion active when liquid water present

• modeled with the temperature-dependent parabolic function rate 
equation

• pitting factor of either 1 or 4 employed

– alloy-825 inner barrier
» probabilistic approach based on expert elicitation on pit growth

rate distribution for high-nickel alloy (McCright and Henshall)
• “constant” pit growth rate distributions given at 70 and 100°C
• pitting corrosion active at temperatures less than 100°C
• calculated the “deepest” pit penetration



Waste Package Degradation Modeling 
in TSPA-1993  

(continued)
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• M&O
– carbon-steel outer barrier

» dry-oxidation considered
• not included in container failure calculation due to negligible 

corrosion by this corrosion mode
» aqueous general corrosion modeled as a function of time and 

temperature
• two thresholds used for the initiation of aqueous general corrosion

– temperature less than 100°C
– liquid saturation greater than the residual saturation

• a pitting factor of 4 employed

– alloy-825 inner barrier
» used the median growth rate of the model used in SNL TSPA-

1993
• calculated the “deepest” pit penetration



Approach to WP Degradation 
Modeling in TSPA-1995
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Waste Package Degradation Modeling 
in TSPA-1995
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• Humid-air corrosion of carbon steel outer barrier
– humid-air general corrosion modeled as a function of 

time, humidity and temperature
» a total of 166 atmospheric corrosion data points (up to 16 

years) from 10 sources
» included data from tropical, rural, urban and industrial test 

locations
» data reduced to define “active” corrosion time and the relative 

humidity and temperature, during which RH ≥ 70 %
– localized corrosion modeled with a pitting factor

» assumed the pitting factor (fp) normally distributed with a mean
of 4 and a standard deviation of 1



Exposure Time (years)
0 2 4 6 8 10 12 14 16

C
or

ro
si

on
 D

ep
th

 (µ
m

)

10

100

SO2 ≤ 70 µg/m3

SO
2
 > 70 µg/m3

Model Prediction for
15 °C; 84 % RH; 90 µg SO2/m

3

±  2 s.d.

General Corrosion Depth vs Time 
of Corrosion-Allowance Material in 

Humid-Air and the 
Model Fit (TSPA-1995)

LEE.PPT.125.NWTRB.10-23-97      26



Waste Package Degradation Modeling 
in TSPA-1995  

(continued)
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• Aqueous corrosion of carbon steel outer barrier
– aqueous general corrosion modeled as a function of 

time and temperature
» included data from tropical lake water and polluted river water 

(up to 16 years)
» Included short-term laboratory data in distilled (‘clean’) water 

for temperature-dependency
– localized corrosion modeled with a pitting factor

» assumed the pitting factor (fp) normally distributed with a mean
of 4 and a standard deviation of 1
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Waste Package Degradation Modeling 
in TSPA-1995  

(continued)
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• Corrosion-resistant Alloy-825 inner barrier
– aqueous pitting corrosion modeled with “constant” 

pit growth rate model
» the pit growth rate model developed from the same expert 

elicitation employed in TSPA-1993
» pit growth rate varies with temperature and is log-normally 

distributed
– modeled galvanic protection of inner barrier with the 

model elicited from the project expert (D. McCright)
» delay the inner-barrier pitting corrosion until the thickness of 

corrosion-allowance outer barrier reduced by 75%



Pit Growth Rate vs Temperature of 
Corrosion-Resistant Inner Barrier in 

Aqueous Condition (TSPA-1995)
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Representation of Uncertainty and 
Variability in Waste Package 
Degradation in TSPA-1995
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• About 12,000 waste packages across the repository
– variability in exposure conditions (T, RH, water 

dripping, water chemistry) across the repository (WP-
to-WP variability)

– variability in exposure conditions (T, RH, water 
dripping, water chemistry) within a single waste 
package (pit-to-pit variability)

– uncertainty in the conceptual model of waste package 
degradation and individual corrosion models 



Representation of Uncertainty and 
Variability in Waste Package 
Degradation in TSPA-1995

(Continued)
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• Represented WP-to-WP variability and pit-to-pit 
variability by equally splitting the variability in the 
individual corrosion models
– humid-air corrosion model for carbon steel outer 

barrier
– aqueous corrosion model for carbon steel outer 

barrier
– aqueous pitting model for Alloy 825 inner barrier



Major Assumptions in Stochastic 
Waste Package Degradation Modeling 

in TSPA-1995
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• Initiate corrosion at temperature below 100 °C
• Initiate humid-air corrosion of carbon-steel outer 

barrier at relative humidity between 65 and 75% 
(uniformly distributed)

• Start aqueous corrosion at relative humidity 
between 85 and 95% (uniformly distributed)

• Corrosion-resistant inner barrier subjected to 
aqueous pitting corrosion only

• A pit density of 10 pits/cm2 assumed for both the 
outer and inner barriers



Schematic of the Conceptual Model 
for WP Degradation Modeling and 

Abstraction for TSPA-VA
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