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Talk Focus I'B-

¢ Strongly heterogeneous media ->
spatial variability of point
measurements

— manifested in flow channeling and fast paths

¢ How uncertainties inherent in site
characterization will influence
performance predictions

¢ How site specific data should be
assimilated into performance
assessment Process
— reduce uncertainty of prediction
— finite amount of data

¢ A site specific example
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Outline

¢ Stochastic Continuum Model of a
fracture medium

— Site specific hydrological data from SKB’s
Aspo Hard Rock Laboratory

¢ Transport Predictions Sensitive to
the Structures of Heterogeneity

— Sensitivity depends on choice of predictive
quantity/performance measure

¢ Calculations to Quantify
Uncertainties in Transport from
Single Canister Sources

¢ Fickian Limit Not Reached

— implication to inference from small scale
testing to large scale prediction

¢ Concluding Remarks



SKI SITE-94 Project I3

¢ Part of Swedish Nuclear Power
Inspectorate’s strategy for
developing integrated Performance
Assessment as a licensing tool for
nuclear waste repositories.

— Alternative geological, hydrological,
transport, geochemical conceptual models

— Dress rehearsal: from site characterization to
performance assessment

¢ Based on surface and borehole data
(1986-1990) from SKB’s Aspo Hard
Rock Laboratory
~ Geological
— geophsical
— hydrological
~ geochemical
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Figure 3.15  Location map of boreholes on Aspd

=kAs03 Core borehole, 1st batch
exaso4 Core borehole, 2nd batch
*Kkasos Core borehole, 3rd batch
*HAs1s Percussion borehole




0 400m A

L vy

Figure 12. Map of cxiensive fractures which are identified in borcholes by means of fracture
logs and borchole radar mecasurements. A 3D model is presented below in Figures
13-15.
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Stochastic Continuum IB
Hydrological Model —

¢ Geostatistical generation of 3D
hydraulic conductivity field
conditioned on “point” data of
injection test in 3m packed sections

— Variograms of ‘“‘point” data display only
short range correlation

— Clustered nature of data cannot discriminate
presence or absence of long range correlation
structure

+ Option of incorporating geological

information of major fracture zones

— Very transmissive structures with long
correlation lengths

— Used as “‘soft” data

¢ Single continuum representation of
both the fractures and the rock
matrix

¢ Flow results calibrated by
interference puming test

+ Stochastic transport calculations by
particle tracking



Conditioned Sequential Indicator IR
Simulation —

¢ Non-parametric technique (Gomez-
Hernandez) - no particular distribution
model is assumed; data are divided into
classes bounded by indicators.

¢ Indicator covariance defined in terms
of joint probability of two values in
space.

¢ Classes of extreme values may have
covariance different from the rest.

¢ If the extreme values of hydraulic
conductivity are given a large
correlation length, the generated field
can have long range connectivity for
only the extreme values.

¢ Allows concentration of large
conductivities in specified planes of
orientations - fractures in the stochastic
continuum representation.



Stochastic Continuum
Model
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Appropriate Performance Measure
(What are the feasible predictive quantities for management decisions?)

T , : Collection
T (Observation)

600m

1 i

Solute breakthrough in small areas Ajj has strong
spatial dependence (Flow Channeling)
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Revised Total Breakthrough Curves
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Remarks on Tracer IB
Breakthrough Results —

¢ Discrimination of fracture-
dominated systems versus
heterogeneous continuum requires
extensive measurements

¢ Spatially integrated solute arrivals
much less sensitive to alternative
heterogenous systems - similar order
of magnitude in solute arrival and
concentration

+ Implication on choice of performance
measure - quantities to be predicted
— ‘““point quantities’- large variations

— spatially integrated parameter, more
stable, more commensurate with our
ignorance of the heterogeneous medium



Tracer breakthrough from single IR
canister sources —

¢ Quantify uncertainties due to spatial
variability

¢ Repeat calculations for hundreds of
radomly selected sites of tracer
source

¢ Obtain transport parameters for
each breakthrough curve (v and D)

¢ Distributions of transport
parameters are measures of the
uncertainty



Fit of 3D Breakthrough Curves
by 1D Advective-Dispersive IR
Equation Solution —
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Distribution of Fitted U(m/yr, left
graphs) and D ( m2/yr, right IR
graphs), in Logarithm Scale —

¢ Reference Case, dip angle 800
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Distribution of Fitted U(m/yr, left
graphs) and D ( m2/yr, right
graphs), in Logarithm Scale
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¢ Isotropic case with only short
- correlation structure
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Single Peak Fits Multiple Peak Fits

Nomenclature |no. of Vio Dto no.of Vio Dse

*) peaks (m/yr) (m*m/yr) |peaks (m/yr) (m*m/yr))

fitted fitted

REF-DIP90 |501 0.045+0.061 5.9+44. 680 0.041+0.058 5.0+43.
REF-DIP80-1 |461 Q.03510.039 2.3+3.6 587 0.033£0.038 3.0+29.
REBR-DIP80-2 |556 0.035+0.041 4.7+35. 723 0.032+0.039 3.5+30.
REF-DIP80-3 {465 0.036+£0.036 4.4+33. 620 0.034+0.038 3.0+27.
REF-DIP80-4 {458 0.040+0.036 4.41+22. 555 0.038+0.035 2.9+12.
REF-ISO-1 451 0.021+0.010 0.99+1.1 529 0.020+0.01 0.82+1.1
REF-1SO-2 |519 0.024+0.013 1.4116. 616 0.023+0.014 1.1t14
REF-DIP40-1 | 366 0.55+0.66 427 0.014+0.0062 0.43+0.56

0.015+0.0058


http:0.43�0.56
http:0.020�0.01
http:0.55�0.66

Inference from small scale
measurement to large scale IR
predictions —

¢ Compute tracer breakthrough curves
from single canister sources for
transport distances of 100m, 200m.....
up to 600m

¢ Fitted transport parameters v and D
as function of transport distance



Combine full recorvery canisters into a single
breakthrough curve; one fit at each distance
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Summary

¢ Stochastic continuum model

— Non-parametric sequential indicator
simulation conditioned to data

— Long range correlation structures to account
for fractures

— Different heterogeneity structures, all
consistent with data, to evaluate model
uncertainty

¢ Choice of Performance Measure

— Large uncertainty if “point” quantities are
chosen as predictive quantity/performance
measure - probably will never have enough
data

— Spatially integrated solute arrivals less
sensitive to heterogeneity structures - more
commensurate with our ignorance of the
heterogeneous medium
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Summary (cont.)

¢ Transport from Single Canister
Sources Releases

— Fit of 3D flow and transport results by 1D
advective-dispersive equation

— v and D for hundreds of calculations to
quantify associated variability
¢ Demonstrate an approach to go from
site characterization data to
performance assessment

— Fickian limit not reached - cannot infer from
small scale measurement to large scale
predictions

+ Caution in using the Predictions -
inherent ignorance of a strongly
heterogeneous system

— spatial variability

~ model uncertainty



