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OUTLINE

® Summary of infiltration studies

® Pagany Wash simulations

® Block Experiment

® Fracture properties

® Matrix properties

e Permeability and fracture data from UZ-16
® Isotopic evidence for deep, transient fracture flow
® Gas flow model of Yucca Crest

® Perched Water

® Unsaturated zone-saturated zone interactions
® Summary



Neutron Hole Data

® Over 90 shallow boreholes in various topographic and
geographic locations. |

® Purpose is to identify those locations where infiltration is
presently occurring and determine dominant controls on net
infiltration, including:

- the type of outcropping geologic formation
- topographic position

- slope aspect

- depth of alluvial cover.
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Moisture Profiles: Sideslopes
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Moisture Profiles: Channei/Terrace
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Varlation In Water Content
July 1992 - April 1993
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‘ Deep Penetration of M@ture Following Runoff @
in Upper Fortymile Wash (Savard, 1994)

® Infiltration and redistribution from runoff events in winters of
1992 and 1993 monitored with neutron logging tool at N91,
10km north-northeast of Yucca Mountain.

® Smaller runoff event of 1992 filled only part of channel and
moisture content changes at N91 did not occur beneath a depth
of Sm. |

@ [ arger runoff event of 1993, which filled the entire width of the -
channel, resulted in moisture content changes all the way to the
water table at an 18m depth.

® Concluded that first wetting pulse stopped after satisfying a
preexisting moisture deficit in the upper 5Sm, but wetter
antecedent conditions and greater width of runoff can allow
moisture to penetrate channel alluvium to considerable depths.

® Extrapolation of results to Yucca Mountain uncertain because
carbonate layers (at least in older alluvium) may impede
infiltration.
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' Evidence from ne’ron moisture logs for .
water flow in the Ghost Dance Fault
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*Cl and “H data - isotopic evidence for near surface, transient
fracture flow (above and within PTn)

® Bomb pulse *°Cl in the PTn unit in N11 (65 and 80 feet
depths), and N53 (144 and 183 feet depths).

® Bomb pulse °H in similar stratigraphic positions in UZ#4 and
UZ #5 in Pagany Wash.

® Bomb pulse *H throughout the Tiva Canyon Member, and
within bedded tuffs as deep as 42m in the Pah Canyon Member
at UZ7 in WT-2 Wash (near trace of Ghost Dance Fault).

® Bomb pulse *H found in UZ6s at depths of 20-30 m in the
densely welded Tiva Canyon Member, in a bedded unit at about
133m depth, and in the upper nonwelded part of the Topopah
Spring Member at a depth of about 145m.

® Bomb pulse "H found within the PTn (tentatively) at UZ#16.



*Cl1 and *H data - isotopic evidence
for deep penetration in alluvium

® Bomb pulse °Cl to depths of 8m at N37

® Bomb pulse *Cl at the alluvium-TCw contact (13m depth) at
UZ#16 (probably occurred as a result of flow along contact
from sideslopes).
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Stochastic Rainfall-Runoff Models

® Characterization of surficial materials (through physical
measurements and model calibration) allows determination of
what combination of climatic events - for instance, how many
successive “wet” years, are necessary to produce recharge of a
certain magnitude.

® Climate record allows the creation of stochastic climate models
that indicate the liklihood of that combination of climatic events
occurring.




Summary of Infiltration Studies

® Thick alluvial cover, in the absence of runoff or ponding,
appears to be effective in storing infiltration until it can be
removed by evapotranspiration (ET). -

® During and following runoff, water can penetrate alluvium to
depths beyond which it would be expected to be removed by
ET.

® Where alluvial cover is thin or absent, water can enter fracture
and move to depths of many tens of meters over periods of
weeks.

® Net solar radiation is strongly influenced by slope aspect, so that
deep infiltration appears more likely on north facing slopes.

® At this time, no topopgraphic setting or outcropping rock type
can be eliminated as being a potentially significant location for
infiltration.



Pagany Wash Simulations

® Estimate percolation rates from saturation, water potential and

isotope data from UZ4 and UZS.
- establish the long-term role of the wash in infiltration

processes.
® Identify important processes and stratigraphic intervals

controlling the vertical and lateral movement of water within
and through the nonwelded and bedded intervals overlying the

Topopah Spring.

® Establish a sense of the time scales required for penetration of
the PTn of infiltrating moisture.




Available Data

® Porosity, saturation and water potential measurements for

boreholes UZ#4 and UZ#5.
® 3H and "*C data from UZ4 and UZ5

- *H data suggested the occurrence of lateral flow and entry

of water along multiple flowpaths.

- 1%C data were obtained from water squeezed from core
sampled at approximately 100m depths in both UZ4 and
UZ5.

@ Matrix properties estimated from statistical correlations between
hydrologic variables determined by analysis of SANDIA (1984)
data set.

® Fracture property estimates based on a aperture-scale fracture
flow model.
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Simulation Results

Indicate that in spite of evidence that the wash has not been a
significant source of recharge over time-scales of a few
decades, the wash appears to be a significant source of recharge
over millennia-long time scales.
Capillary barrier effects at the interface between the pores of
the nonwelded tuffs and the fractures of the underlying densely
welded tuffs, particularly the low-porosity vitric caprock of the
Topopah Spring Member, promote lateral flow in the overlying
intervals.
- decreases the flux rates entering the potential repository unit
considerably from peak values at the ground surface.
- significantly delays (perhaps by thousands of years) the entry
of surface derived moisture into the potential repository unit.
Illustrates the processes by which depth-inversion of
groundwater ages may be accomplished.



Near-static water potential equilibrium profile @)
in the 20m above the TSw vitric caprock at
UZ7 suggests a capillary barrier effect.
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Block Experiment

® Need for experimental basis for underlying assumptions in
numerical models, particularly, that fractures become
nontransmissive at small water tensions.

® Provide experimental support for modeling results (for example,
that capillary barrier effects between unfractured and underlying
fractured formations inhibit the entry of water into the lower
interval).

® Allows estimates of water percolation rates made on the basis
of pneumatic testing, water potential monitoring and fracture
mapping to be compared with applied percolation rates.
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Fracture Properties

® Assumptions about behavior at the pore-scale can influence
model results at the site-scale.

® Capillary theory and application of a pore-scale accessibility
criteria form the basis for numerical models which consider
aperture variability in thin, rough-walled fractures to calculated
moisture retention and unsaturated flow properties.

® A large body of experimental data supporting the use of these
models does not exist.

® Fracture mapping of the ESF suggests that conceptual model of
fracture flow behavior needs to be expanded to consider wide
(noncapillary fractures) fractures, mineralized or otherwise filled
fractures, and fractures with obvious controls on flow such as
gas tubes (“wormtubes”).



LIQUID SATURATION

Estimated fracture properties
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Calcite-Silica Study

® Frequently, only a small percentage of fractures in drill core wil
contain calcite, implying that flow pathways may occupy only
a small percentage of a fracture network.

® Fracture flow has been episodic but repetative. Dissolution
surfaces on fracture coatings may represent periods of greatest
recharge, when waters are undersaturated with respect to calcite.

® The observation that calcite rarely occurs in fractures within the
PTn suggests flow has occurred primarily through the matrix in
that unit.

® 14C ages of 14 samples from the unsaturated zone yielded 3
values greater than 51ky, 1 value as young as 20.9ky, and 10
values between 33.4-45.3ky, indicating calcite formation as
recently as the last glacial period.




Matrix Properties

® Properties measured or assumed at the pore scale affect model
results and their interpretation.

® A large data set for porosity, saturated hydraulic conductivity,
and moisture retention characteristics is emerging both from

drilling and sampling along horizontal and vertical transects.

ClLliiil R LAJAALIJRRL Luiviii viQiia
® Analysis of older data sets allowed identification of significant

correlations between hydrologic varables important in
constraining parameter space in stochastic models.

® Hydrologic data collected by procedures that reflect field
conditions remain scarce, particularly concerning hysteretic
behavior.
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IMBIBITION THROUGH THE BASE
(Z2nd serie=s of experiments)
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IMBIBITION THROUGH THE BASE
(First series of the experiments)
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UZ16 Air Permeability, Fracture and Isotope Data

® UZ16 unique in that permeability, fracture and several different
types of isotope data exist.

- %°Cl and "*C data are in apparent conflict.
@ UZ16 is in the process of being instrumented for VSP imaging

of nearby fault structures, which may help resolve some
remaining uncertainties.



RASMUSSEN ET AL.: PERMEABILITY OF APACHE LEAP TUFF 2003
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Summary of UZ16 Studies

® Permeabilities determined from air-injection tests in the
Topopah Spring Member appear vary over a very limited range
over depth intervals of many hundreds of feet, suggesting
porous media type behavior, at least for air flow.

® The intermittent appearance of *H throughout the Topopah
Spring Member suggests that only a few of the many fractures
are conducting water (understandable, given the permeability.)

® The effective permeabilities determined for the Calico Hills
suggest that matrix permeability is locally augmented by
fracture contributions.

® The apparent discrepancy between the *°Cl and '* data may be
resolved by considering the relative stratigraphic positions and
fracture densities in their respective sampling locations, and the
relative liklihood of sampling fast paths in structured (fractured)
and unstructured (unfractured) media.




Isotopic Evidence for Deep,
Transient Fracture Flow (below PTn)

Bomb pulse "H (20+ tritium units) occur sporadically
throughout the densely welded Topopah Spring Member at
UZ1e.

Nine "*C age dates of 1000 to 5000 years for pore water in the
Calico Hills at UZ16 between depths of 1200 to 1500 feet.
(Water with a *C concentration 97% modern was associated
with a water sample having 44 tritium units).

14C age date of 3500 years for a water sample from the perched
water encountered at NRG-7 within the Calico Hills at
approximately 1500 feet.

® 36C] values from the saturated zone at UZ14 give *°Cl/Cl ratios

of 675+\- 12 x 10", indicating possible bomb pulse
contributions.



Summary of Gas Isotope Data

All gas samples at depths <100m at Yucca Crest (UZ6s,
neutron holes) have '“C activities >100 percent modern,
suggesting that the shallow flow system within the Tiva Canyon
Member operates on time scales of decades or less.

Fractured tuffs of the Topopah Spring Member at UZ1 and UZ6
show pre-bomb activities of “C.

® 4C data at UZ1 appears to be consistent with a simple diffusion

model whose estimated parameters appear to be reasonable for
geologic media.

Estimates of the size of the CO, reservoir necessary to
contribute to the outflow of CO, indicate that flow from the
east side of Yucca Mountain is a major source. (Also consistent
with estimates based on methane consumption rates).

An averaged downward advective velocity of v=50 m/yr is

necessary to capture soil CO, along the east slope at rates
observed from UZ6s.
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Gas isotope data and modeling of the gas flow system.

® The model is extremely preliminary.

® As indicated by the isotope data, the numerical model suggests
considerable segregation of the shallow and deep gas flow
system occurs when the PTn is assumed not to be fractured.

® The numerical model suggests a considerable amount of flow
originates from the east slope of the mountain, as indicated by
calculations for the size of the reservoir necessary to produce
the observed CO, at borehole UZ6s.

® The model suggests considerable downward advective gas flow
on the east slope of the mountain, consistent with calculations

of advective velocities necessary to produce the observed CO,
at UZ6s.



Perched Water

® Perched water was observed at boreholes UZ1, UZ14, UZ16,
NRG-7/7a and SD-9.

® All occurrences of perched water occurred where a zone of
fracturing was underlain by an interval of low matrix
permeability and either low fracture frequency or filled
fractures.

® Response to pump tests appears to be a good method for
determining the magnitude of the perched zone.

® All encounters with perched water or freely-draining fractures
noted so far have occurred below the stratigraphic levels
expected to be penetrated by the North Ramp or the Main Test
Level of the ESF.

® Should drifting proceed to the Calico Hills, encounters with
perched water are more likely.
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Unsaturated Zone-Saturated Zone Interactions
® Physical interactions
® Information transfer

® Numerical model coupling
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Summary of Physical Interactions
® A cross-section of the geology across the northern part of
Yucca Mountain suggests it is not implausible that perched
water beneath Drill Hole Wash is saturated zone water that has

been diverted along impermeable beds as the water table
elevation drops 300m.

® A map of geologic units intersected by the water table shows
that, because of the low primary and secondary permeability of
many of the units, hydraulic connections between the
unsaturated and saturated zones may be localized and restricted
to the Topopah Spring Member and major faults.



Information Transfer

® Formation permeabilities from well-testing unsaturated zone
hydrologic units where submerged.

® Estimation of fault properties and behavior from calibration of
saturated zone site model.

® Additional information on fault behavior from heat flow data.

® Tracer tests at the C-wells may provide values for effective
porosities and diffusion coefficients for aqueous species (only
gas tracers are currently planned in UZ).

® Sampling of groundwater chemistry in the shallow saturated
zone may provide an additional means of identifying fast paths
through the unsaturated zone if dilution is not too great.




Coupling of Saturated and Unsaturated Zone Models

® Physical coupling of the saturated and unsaturated zones,
although more complex that previously assumed, may not
‘require a fully coupled model to capture interactions, at least for
modeling of ambient conditions.
- Yucca Mountain not assumed to be a major source of
recharge for the regional ground water system.
- Water table location a relatively minor source of uncertainty.
® Past numerical simulations using the site 3d unsaturated zone
model have not considered variations in water table elevations.
® Weak coupling can be accomplished through “maps” (physical
or digital) with contours describing intensity of recharge or
nuclide concentration or arrival times. 4
® In the future, consideration of repository generated heat may
necessitate the use of a more strongly coupled unsaturated-
saturated zone flow model.



SUMMARY AND CONCLUSIONS

® Neutron logging and isotope data suggest that near-surface
fracture flow is a relatively common occurrence.

® At this time, no topographic setting or outcropping rock type
can be eliminated as being a potentially significant location for
infiltration. |

® C(Capillary barrier effects in the PTn may significantly reduce
peak surface fluxes from peak values at the ground surface and
significantly delay their entry into the potential repository
horizon.

® Although much has been learned about fracture and matrix
properties, significant gaps exist for certain types of data.

® UZ16 data permeability and fracture data suggest gas flow may
be described by porous media models, but isotope data suggest
that water may be moving along a much smaller subset of
available pathways.




SUMMARY AND CONCLUSIONS (continued)

14C and *H data for UZ16 indicate relatively short (<1000
years) travel times as a result of fault or fracture flow near that
borehole. |
Although relatively few locations have been studied, available
gas isotope data indicate the PTn effectively separates the
shallow and deep gas flow systems, suggesting little fracture
permeability for the PTn.

The perched water detected in the northern part of Yucca
Mountain may be due to the steep decline of the potentiometric
surface between G2 and G1, and lateral diversion of water
into the UZ along low permeability beds. |

Direct connections between the unsaturated and saturated zones
may be localized and restricted to the Topopah Spring Member
and major faults.



