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Outline

General information about geothermal systems
Classifications and conceptual models of geothermal systems
Hydrological and thermal aspects of geothermal systems

Vapor-dominated systems as analogue to Yucca Mountain
(with repository)

Heat transfer in lava flows
Implications for Yucca Mountain

Possible geothermal analogue studies
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Conceptual Reservoir Model
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Extended-Dry Repository Concept:
Issues

Exciting concept (if valid) as it isolates waste from
free-flowing water

Concept does not seem very sensitive to some
hydrological parameters

Concept is an unproven hypothesis

Concept is based on model calculations without
significant “history matching”
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Extended-Dry Repository Concept:
Possible Failure Modes

Water flow in fractures ) heat pipe

Fracture/fault-flow from condensation zone through “cold
spots’ near canisters to water table

Environmental issues become significant (e.g. high,
near-surface temperature; gas outflow, with contaminants;
water-level changes; and, temperature contamination in
saturated zone)

Incomplete dry-out due to vapor-pressure lowering effects
(adsorption, capillarity, salinity effects)

Hydrothermal eruption!
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Classifications of Geothermal Systems

« Temperature classification

- Low temperature (<100 °C)
- Medium temperature (100-200 °C)
- High temperature (>200 °C)

« Phase classification

- Single-phase liquid water
- Two-phase liquid-dominated (hydrostatic)
- Two-phase vapor-dominated (vaporstatic)

« Flow classification

- Porous medium
- Single-fault medium
- Fractured-rock medium
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Vapor-Dominated Systems as Analogues
to Yucca Mountain (with Repository)

« Fractured-porous medium with large faults

- Small fracture spacing—large fracture
permeabilities (~Darcy)

« Small matrix permeability (~mD)
« Strong capillary pressure effects
« Fracture pressures gas-static
« Water stored in matrix blocks

« Heat source
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Heat Transfer Mechanisms

« Conduction

« Convection

« Heat pipes
- Vapor-dominated
- Liquid-dominated
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Dominant Heat-Transfer Mechanisms

- Single-Phase Systems )» Convection
- Two-Phase Systems )» Heat Pipes

- Hot-Deep Zones J» Conduction
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S, =25%,K=0.1Darcy, P, =0
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Sgi =50 %, K = 0.1 Darcy,
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Sgi =70 %, K=0.1 Darcy, P_=0
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S oi = 75 %, K=0.1 Darcy,P_=0
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Heat Pipes in Vapor-Dominated Systems

Model A Model B
Fracture/matrix counterflow Fracture heat pipe
T 0.5 wime T 0.5 wme
g i water
% g steam
0.5 Wme Tl T 0.5 wim2
k AP
H I it Qnh=qme*L=— oL
eat flow per unit area h=Aqm 0 p A7
AP _ Qnu
Az  kpL
o1n—4
Model A o= ——02"10 . 25.10%pa/m

Az 107184105 e 24108

= heat pipe must be present in the fractures.



Geothermal Analogue Studies

May be the only way to determine the likely heat-
transfer modes and thermal regime at Yucca Mountain

May help to better understand two-phase flow in
fractures and give better understanding of conditions
under which heat-pipes develop

May help to understand the role of fracture fillings, of
the fluid chemistry, and of the matrix blocks on mass
and heat flow

Propose to drill corehole at the geysers that penetrates

both the typical reservoir and the underlying “hot, dry”
zone
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Conclusions

Heat pipes are the “preferred” heat transfer mechanism in
two-phase geothermal systems

Conduction-dominated zones may be present in deep-hot
vapor-saturated systems

Heat pipes develop in “preferential” fracture/fault zones that
are spaced on the order of 100 m apart

Heater tests are not likely to fully resolve the issue of likely
thermal regimes at Yucca Mountain

Geothermal analogue studies of vapor-dominated

reservoirs are essential for reliable predictions of future
thermal regimes at Yucca Mountain
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Implications for Thermal Loading at
Yucca Mountain

 Geothermal experience suggests that
heat pipes will develop in fractures at
Yucca Mountain, hence, temperatures
may remain near 100°C.

 Geothermal experience suggests that if
total dry-out takes place hydrothermal
eruptions may conceivably occur.




Vapor-Dominated Heat Pipes at
The Geysers

* Indirect data suggest that the heat
transfer controlling heat pipes are spaced
some 100 m apart including

— major steam entries encountered during
drilling

— effective fracture spacing inferred from
history matching with 30 years of reservoir
performance data




Hydrothermal Eruptions

“Typical features of the Taupo Volcanic Zone high-
temperature geothermal fields”

“In the undisturbed systems, major deep-seated eruptions,
originating as deep as 400 meters below ground surface, can
be expected every few thousand years, while small shallow
focus events occur years apart”

“These large magnitude eruptions produced vents from 50
to 250 meters in diameter and deposits that cover 5 to 10
km2.”

“... as hydrothermal eruptions are characteristic of high
temperature fields, their destructive potential should be
considered in any development proposal

Bixley and Browne (1988)




Conceptual Model of The Geysers
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Proposed Corehole at The Geysers
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Lava Cooling at Westman Islands
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