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Hydrogeologic uncertainties

* Qverview of Yucca Mountain hydrology

* Hydrothermal flow at the repository horizon

* Temperature profiles as a function of thermal load

* |mpact of hydrothermal flow on temperature distribution
* |mpact of thermal load on repository performance

* |mpact of thermal load on hydrogeologic uncertainties
® Conclusions

® Appendix
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Key repository performance issues depend
on hydrology

®* Waste package degradation/waste form dissolution

® Radionuclide flow and transport
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Overview of Yucca Mountain hydrology

* The key consideration is the impact of thermal load on
fracture-dominated flow

* Matrix-dominated flow will not result in significant vertical
transport of radionuclides

* Field evidence indicates fracture-dominated flow can occur
to considerable depth

* Fracture-dominated flow is only credible mechanism bringing
water to waste packages and transporting radionuclides

* Boiling and dry-out greatly enhance fracture flow attenuation

* These effects can reduce the impact of uncemainties

ES-TB-13 (10-3-81) PM



Episodic infiltration occurs as fracture-dominated flow
in the low permeability units and matrix-dominated
flow in the high permeability units
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Liquid saturation profile obtained from several 1-D models
of steady-state recharge flux versus saturations from the

Depth below groundsurface (m)

50

100

150

200

250

300

350

400

reference information base (RIB)

450 "‘, {

| b—={ RIB values i

~—-—— 0.132 mm/yr CHnz 1

S00— -emeeeeee- 0.045 mm/yr ‘s

| 0.000 mm/yr
ss0— PPw

1 1 { I 1 i | l | 1 1 I i 1 L I 1 | 1
0.0 0.2 0.4 0.6 0.8

Liquid saturation

ES-TB-37 (6-10-91) IL



Factors mitigating liquid flow along
preferential fracture pathways

* Discontinuity in fracture networks
* Liquid-phase dispersion in fracture networks
* Fracture-matrix interaction
* For low APD's, only matrix imbibition
* For high APD's, boiling effects and enhanced
imbibition due to dry-out



Hydrothermal flow at the repository horizon

» Unsaturated, fractured tuff promotes rock dry-out by boiling

* Volume of dry-out zone is primarily dependent on thermal
load and thermal properties

* Fracture-matrix properties of host rock promote rapid
condensate drainage

* Volume of dry-out zone can be enhanced by alternative
emplacement configurations

 The numerical models used in this study are very conservative
in predicting the dry-out volume

ES-TB-4 (10-1-91) PM



T (18-02+) £-81L-83

@

000 years for a

isod

1991)

itao,

igate ep

I mi

ingw

(for up to 1
scheck and N

bo
ge
Bu

ing

perturbed cond”ons,
ching the waste packa
ng rate of 57 kw/acre) (

tory heat load

r hydrothermally
reposi

fracture flow from rea

Ung




A "hydrothermal umbrella" is established along each of the emplacement
drifts due to condensate being shed off of the sides of the boiling zone
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Depth below ground surface (m)
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The shedding of condensate between emplacement drifts will continue until
the boiling zones coalesce approximately 80 years after emplacement

Dimensionless liquid saturation for 30-yr-old fuel, an APD of 57 kW/acre,
a drift spacing of 38.4 m, and a recharge flux of 0.0 mm/yr
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After 1000 years, boiling has resulted in a 100-m-thick
dry-out zone, surrounded by a condensation zone, with
. condensation drainage extending to the water table

Dimensionless liquid saturation for 30-yr-old fuel, an APD of 57 kW/acre,
a drift spacing of 38.4 m, and a recharge flux of 0.0 mm/yr
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Although boiling ceased after 1800 years, most of the
repository remains dry 5000 years after emplacement

Dimensionless liquid saturation for 30-yr-old fuel, an APD of 57 kW/acre,

Depth below ground surface (m)

a drift spacing of 38.4 m, and a recharge flux of 0.0 mm/yr
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Temperature profiles as a function
of thermal load

e Thermal disturbance reaches ground surface and water table
within 300 years

 For given fuel age, temperature rise is linear in APD

 Repository temperatures are uniform within the inner
two-thirds of repository area

« The emplacement drift-scale model (which accounts for local
thermal load distribution) predicts temperatures similar to
those in the inner two-thirds of the repository-scale model

(which averages the thermal load)
.
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Temperature profile is flattened at boiling zone (~ 96°C)
and the temperature disturbance reaches ground surface
300 years after emplacement

Temperature profile along repository centerline for 30-year-old fuel,
an APD of 57 kW/acre, and a recharge flux of 0.000 mm/yr
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Repository temperatures are uniform within the inner two-thirds of repository

Temperature (C)
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Radial temperature profile at repository horizon for 30-year-old fuel,

and an APD of 57 kW/acre, and a recharge flux of 0.0 mm/yr
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Temperature (C)

For a given age fuel, temperature rise is proportional to APD

Temperature history at repository center for 30-yr-old fuel and a recharge flux of 0.0 mm/yr
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Impact of hydrothermal flow on
temperature field

» For 30-year-old fuel and APDs up to 100 kW/acre, heat flow
around the repository is dominated by heat conduction

e Temperatures in the vicinity of the waste packages decrease
modestly with increasing recharge flux

* Boiling results in lower temperatures in the vicinity of the
waste packages

» Heat conduction models yield
e conservatively high temperatures in the vicinity of the
waste packages
e conservatively low temperatures with respect to the
extent of the boiling zone

» Hydrothermal models predict higher temperatures in the
Calico Hills units (CHnv and CHnz)



The heat conduction model yields conservatively high
temperatures near the waste packages and conservatively
‘ low temperatures with respect to the extent of boiling

Temperature profile along repository centerline for 30-yr-old fuel, and APD of 57
kW/acre predicted by the hydrothermal and heat conduction models at t = 100 yr
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Impact of thermal load on repository performance

* The threshold for significant rock dry-out benefits occurs
between 36 and 57 kW/acre for 30-yr-old fuel

* For low-to-medium APD's (20 to 40 kW/acre for 30-yr-old fuel)
performance considerations remain with no dry-out benefits

* Substantial boiling and dry-out benefits occur for high APD's

* Dry steam boiling conditions persist at the waste package
for thousands of years

* Rock dry-out benefits remain thousands of years after
boiling ceases

* For drift emplacement, substantial dry-out benefits are
obtained with minimal impact on waste package temperatures

* Even high APD's result in minimal temperature disturbance at ground surface

* Boiling conditions and rock dry-out greatly enhance fracture flow attenuation
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Dry-out volume X 106 m3

For 30-yr-old fuel, the threshold APD for significant dry-out by

boiling lies between 36 and 57 kW/acre
Dry-out volume of liquid water vs. time for 30-yr-old fuel, and a recharge flux of 0.0 mm/yr
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Dry-out volume X 106 m3

For a given APD, dry-out benefits can be substantially increased

Dry-out volume of liquid water vs. time for an APD of 57 kWi/acre,
and a recharge flux of 0.0 mm/yr

using older age fuel
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After 1000 years, boiling has resulted in a 250-m-thick
dry-out zone, surrounded by a condensation zone,
‘ with condensation drainage extending to the water table

Dimensionless liquid saturation for 30-year-old fuel,
an APD of 100 kW/acre, and a recharge flux of 0.0 mm/y
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Although boiling ceased after 4200 years, a 150-m-thick
dry-out zone remains, and much of the Calico Hills (CHnv
‘ and CHnz) is drier than initial saturation at t = 5000 yr

Liquid saturation profile along repository centerline for 30-yr-old fuel,
an APD of 100 kW/acre, and a recharge flux of 0.0 mm/yr
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Temperature (C)

Dry steam boiling conditions persist at waste package environment
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for thousands of years for high APD's

Drift wall temperature for drift emplacement of 30-yr-old fuel
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For a given APD, the duration of dry steam boiling conditions is substantially
increased using older age fuel with minimal impact on waste package temperatures
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Ground surface temperature effects

® For 30-year-old fuel and APDs up to 100 kW/acre, heat flux
at the ground surface never exceeds 1.5 W/m?

* Therefore, the temperature rise at the ground surface
should never exceed 1°C
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Above the repository horizon, the attenuation of fracture flow will be
much greater for boiling conditions than for sub-boiling conditions

<
3
i

Matrix volume affecting fracture flow

H

Vi (T < Tp) ~ VDeqp Vin(T>Ty) ~ 2| Dihy
where D¢, = capillary diffusivity where Dy, = thermal diffusivity

for TSw2, Dggp ~ 2 X 10°9 m2 for TSw2, Dy, =1 X 106 %3
S
(o] Vm (T > Tb)

(e]e} =

Vin (T< Tp)
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Impact of thermal load on hydrogeologic
uncertainties

* For APD's as low as 20 kW/acre, the flow and transport
properties of potential radionuclide pathways may be
significantly altered

* The hydrologic performance of the repository is much less
sensitive to hydrogeologic uncertainty at high APD's than
at low APD's
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For a given fuel age, temperature rise at the top of the Calico Hills (CHnv)

Temperature (C)
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Temperature history at top of the CHnv, 60 m below the repository horizon
for 30-yr-old fuel and a recharge flux of 0.0 mm/yr
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Although boiling and dry-out benefits are negligible,
condensation drainage extends all the way to the water table

Depth below ground surface (m)

Dimensionless liquid saturation for 30-year-old fuel,
an APD of 20 kW/acre, and a recharge flux of 0.0 mm/yr
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Temperature (C)

The duration of dry steam boiling conditions is relatively insensitive
to a large range in initial saturation; the heat conduction model
conservatively predicts duration of boiling conditions

Drift wall temperature for drift emplacement, 30-yr-old fuel, and an APD of 100 kW/acre
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Key hydrogeologic/geochemistry uncertainty
considerations

o Zeolitization of the vitric nonwelded CHnv even at low APD's

* Alteration of flow and transport properties of fracture pathways
in the zeolitized nonwelded CHnz even at low APD's

» Impact on performance may be significant for
low-to-medium APD's

e Impact on performance is much less significant for
high APD's
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Key hydrogeologic/geomechanical uncertainty
considerations

* Thermally-induced macro-fracturing near openings
* may result in additional preferential pathways

* may also result in increased liquid-phase dispersion
in fracture networks

e Thermally-induced micro-fracturing out to the boiling front

* may increase matrix capillary diffusivity, enhancing the
impact of matrix imbibition on fracture flow attenuation

* Both macro- and micro-fracturing may enhance rock
dry-out rate due to boiling “~
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Conclusions

Questions 1-3: Significance of benefits/problems;
associated uncertainties

* Vapor and liquid flow in fractures is the key hydrogeologic consideration

* Repository performance at higher APD's is much less sensitive to
hydrogeologic variability/uncertainty

e Unsaturated, fractured tuff promotes rock dry-out by boiling and rapid
condensate drainage

e Rock dry-out volume dominated by thermal load and thermal properties

* For higher APD's and older age fuel, boiling and rock dry-out benefits
persist for thousands of years

* Promoting more favorable waste package conditions
* Greatly enhancing fracture flow attenuation

» Performance problems remain at lower APD's with no dry-out benefits
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Conclusions (continued)

Question 3: Uncertainties

* Performance modeling of high APD's is much less sensitive
to hydrogeologic variability/uncertainty

* Data on fracture network properties is currently limited

* In situ test data for hydrothermal model validation is
currently limited to G-Tunnel experiments

Question 4: Uncertainty resolution
» Site characterization/ESF testing/prototype testing

* Testing under boiling conditions provides better
experimental basis for model validation

* More likely to adequately resolve uncertainties associated
with high APD's than with low APD's
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Appendix



With respect to fracture-matrix flow, the

hydrostratigraphic units at Yucca Mountain
fall into two distinct categories

* The low matrix permeability of the welded units (TCw, TSwi,
TSw2, and TSw3) and the zeolitized nonwelded unit (CHnz)

promotes fracture-dominated flow (given a sufficient
infiltration source)

» The high matrix permeability of the vitric nonwelded units (PTn
and CHnv) generally promotes matrix-dominated flow

» The hydrostratigraphy and hydrologic property values used in
this study are obtained from Klavetter and Peters (1986)
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Temperatures decline more quickly at edge of repository; however, dry steam
boiling conditions persist for 2000 years for an APD of 100 kW/acre

Temperature (C)

Temperature history at edge of repository for 30-yr-old fuel and a recharge flux of 0.0 mm/yr
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For 30-yr-old fuel, the threshold APD for significant dry-out by
boiling lies between 36 and 57 kW/acre

Liquid saturation history at drift wall for drift emplacement for 30-year-old fuel
and a recharge flux of 0.0 mm/yr
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Rock dry-out benefits persist at edge of repository for high APD's

Liquid saturation at edge of repository for 30-yr-old fuel and a recharge flux of 0.0 mm/yr
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For an APD of 57 kW/acre, rock dry-out benefits persist at edge of

repository for 60-yr-old fuel

Liquid saturation at edge of repository for an APD of 57 kW/acre and a recharge flux of 0.0 mm/yr
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Temperature (C)

Waste package temperatures for drift emplacement are much lower
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than for borehole emplacement

Waste package temperature for drift emplacement of 30-yr-old fuel
and a recharge flux of 0.0 mm/yr
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Temperature (C)
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Boiling and rock dry-out benefits are obtained for 60-yr-old fuel
with minimal impact on waste package temperature

Waste package temperature for drift emplacement for an APD of 57 kW/acre
and a recharge flux of 0.0 mm/yr
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Temperature (C)

A substantial increase in boiling and dry-out benefits is obtained for
60-yr-old fuel, with dry steam boiling conditions persisting for 10000 years
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Drift wall temperature for drift emplacement for an APD of 114 kW/acre
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Temperature (C)
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Dry steam boiling conditions persist for more than 10000 years,
with waste package temperatures peaking at 275°C

Waste package temperature for drift emplacement for an APD of 114 kW/acre
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